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Abstract

A continuum-based model for computing strain energies and estimating Young�s modulus of single-walled carbon

nanotubes (SWCNTs) is developed by using an energy equivalence-based multi-scale approach. A SWCNT is viewed as

a continuum hollow cylinder formed by rolling up a flat graphite sheet that is treated as an isotropic continuum plate.

Kinematic analysis is performed on the continuum level, with the Hencky (true) strain and the Cauchy (true) stress

being employed to account for finite deformations. Based on the equivalence of the strain energy and the molecular

potential energy, a formula for calculating Young�s modulus of SWCNTs is derived. This formula, containing both the

molecular and continuum scale parameters, directly links macroscopic responses of nanotubes to their molecular

structures. Sample numerical results show that the predictions by the new model compare favorably with those by

several existing continuum and molecular dynamics models.
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1. Introduction

Carbon nanotubes have been found to exhibit extraordinary physical and mechanical properties (e.g.,
Thostenson et al., 2001; Maruyama and Alam, 2002; Bernholc et al., 2002; Qian et al., 2002). Consequently,

they are identified as ideal reinforcing materials for high-performance nanocomposites (e.g., Vaia et al.,

2001; Maruyama and Alam, 2002). To realize this goal, accurate understanding of the mechanical responses

of individual carbon nanotubes and their behavior at the nanotube–matrix interface is essential.

A fairly large number of studies have been devoted to predicting elastic properties of carbon nanotubes

by using empirical potential techniques, tight-binding methods and ab initio calculations. These approaches

typically involve extensive computations and tend to be configuration specific. In contrast, analytical

models based on continuum mechanics are known to be more cost-efficient and less geometry dependent.
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However, extensive investigations on continuum models for nanotubes have not been undertaken until

recently. By linking molecular structures of nanotubes to their macroscopic responses through energy

equivalence, two continuum-based models for predicting elastic properties of nanotubes have recently been

proposed by Odegard et al. (2002) and Li and Chou (2003). In another recent development by Zhang et al.
(2002), a continuum theory for modeling carbon nanotubes is established by directly incorporating inter-

atomic potentials into a continuum-level constitutive relation on the basis of the Cauchy–Born rule. These

three continuum mechanics models are shown to give good predictions when compared with more detailed

molecular dynamics models and existing experimental results, thereby supporting the development of

continuum-based models using multi-scale approaches.

A single-walled carbon nanotube (SWCNT) can be viewed as a hollow cylinder formed by rolling up a

two-dimensional (2-D) graphite sheet (e.g., Sawada and Hamada, 1992; Tersoff, 1992; Thostenson et al.,

2001). Naturally, the formation of such a nanotube from a flat graphite sheet is a large deformation
problem. Hence, kinematics of finite deformations should be employed in developing continuum-based

models. However, existing continuum mechanics models for energetics of carbon nanotubes are built upon

linear elasticity theories dealing with infinitesimal deformations. For example, the strain energy P stored in

a SWCNT of length L, thickness a and radius R (due to the afore-mentioned rolling up) has been taken to

be of the form (e.g., Robertson et al., 1992; Gao et al., 1998):
P ¼ pELa3

12R
; ð1Þ
where E is the Young�s modulus. This formula was initially derived by Tibbetts (1984) for a different

purpose using the Bernoulli–Euler (simple) beam bending theory based on infinitesimal displacement and

plane stress assumptions. Therefore, L and a in Eq. (1) are actually properties of the flat (undeformed)

graphite sheet from which the SWCNT is formed, and R is the radius of the neutral surface. In addition, it is

required that L in Eq. (1), which is based on the simple beam bending theory for narrow (plane stress)

beams, be small (compared with a) for accurate predictions. These facts set limitations for the use of Eq. (1)

in calculating strain energies stored in nanotubes.

The objective of this paper is to develop a continuum-based model for computing strain energies and
estimating Young�s modulus of SWCNTs by using finite deformation kinematics and incorporating mo-

lecular structures. In Section 2, kinematic and constitutive relations, both on the continuum level, are first

obtained. Hencky (true) strain and Cauchy (true) stress are used to account for large deformations, and

Hooke�s law is employed to describe the constitutive behavior. This is followed by the formulation of the

boundary-value problem, which leads to explicit formulas for computing strain energies and effective

Young�s modulus of SWCNTs. The molecular structures of nanotubes are incorporated into the model

through requiring the energy equivalence of the strain energy and the molecular potential energy.

Numerical results of sample cases are presented in Section 3 to illustrate the application of the new
formulas. A comparison with relevant data––modeling and experimental––is also given there. The paper

concludes with a summary in Section 4.
2. Formulation

2.1. Kinematic and constitutive relations

The graphite sheet is represented as a 2-D continuum plate with a finite (effective) thickness before being

rolled into a hollow cylinder equivalently representing the carbon nanotube mapped from the graphite

sheet. This enables the kinematic analysis to be performed on the continuum level. By following a pro-
cedure similar to that used in Gao (1994), the kinematic relations can be derived as follows.
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Let X and r be the position vectors of a material point in the undeformed and deformed configurations,

respectively. Then, the mapping X ! r, i.e.,
X ¼ X e1 þ Y e2 þ Ze3; �T 6X 6 T ; �W 6 Y 6W ; �L6 Z6 L;

! r ¼ rerðhÞ þ zk; r ¼ f ðX Þ; h ¼ gðY Þ; z ¼ Z; k ¼ e3;

ri 6 r6 ro; �p6 h6p; �L6 z6 L

ð2Þ
characterizes the plane strain deformation of the continuum plate of thickness 2T , width 2W and length 2L
into a tube of inner radius ri, outer radius ro and length 2L, as shown in Fig. 1.

The deformation gradient F, defined by dr ¼ FdX, can be obtained from Eq. (2) as
F ¼ f 0ðX Þer � e1 þ f ðX Þg0ðY Þeh � e2 þ k� e3; ð3Þ
where the prime denotes differentiation with respect to the argument of the function. To maintain the

prescribed boundary correspondence, it is required that f 0ðX Þ > 0, g0ðY Þ > 0 and r ¼ f ðX Þ > 0. The left

stretch tensor V can then be determined from the polar decomposition of F as
V ¼ f 0ðX Þer � er þ f ðX Þg0ðY Þeh � eh þ k� k: ð4Þ
This leads to the following expression for the Hencky (true; logarithmic) strain H ¼ lnV:
H ¼ ln f 0ðX Þer � er þ ln½f ðX Þg0ðY Þ�eh � eh: ð5Þ
Assume that the deformation from the flat plate to the hollow cylinder is isochoric. Then, it follows that

J � detF ¼ 1, which gives, with the use of Eq. (3),
f 0ðX Þf ðX Þg0ðY Þ ¼ 1: ð6Þ
Eq. (6) implies that
f 0ðX Þf ðX Þ ¼ 1

g0ðY Þ ¼ C; ð7Þ
where C is a constant. This set of uncoupled ordinary differential equations, subject to the boundary

conditions specified in Eq. (2), can be solved to yield
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Fig. 1. Reference configuration (a) and deformed configuration (b).
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r ¼ f ðX Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
W
p
ðX þ T Þ þ r2i

r
; h ¼ gðY Þ ¼ p

W
Y ; ð8Þ
where ri is yet unknown and needs to be determined as part of the solution. The use of Eq. (8) in Eq. (5)

then gives
H ¼ � ln
p
W

r
� �

er � er þ ln
p
W

r
� �

eh � eh: ð9Þ
The Hencky strain H will be used to measure the large deformation, and the Cauchy (true) stress r,

which is the same as the Kirchhoff stress conjugated to the Hencky strain when J ¼ 1 (Gao, 1994), to

describe the material response.

The stress–strain relation is taken to be linearly elastic, as was done in earlier studies on energetics of

carbon nanotubes (e.g., Tersoff, 1992). This is based on the observation that the pure bending of the plate
(representing the graphite sheet) into the cylinder (representing the SWCNT) involves large deformations

but small strains. The latter are due to the small thickness of the cylinder (nanotube) and the existence of a

neutral surface between the inner and outer surfaces of the cylinder. It then follows that the constitutive

relation in terms of the Hencky strain H and the Cauchy stress r can be written as (Gao, 1994)
r ¼ 2

3
EH� pI; ð10Þ
where E is Young�s modulus, p is the hydrostatic pressure, and I is the identity tensor defined by
I ¼ er � er þ eh � eh þ k� k: ð11Þ
2.2. Boundary-value problem

The basic governing equations for the present problem, which embody the afore-mentioned kinematic

and constitutive relations, include the equilibrium equations (with no body forces)
divr ¼ 0; ð12Þ

the kinematic equations
H ¼ erer � er þ eheh � eh; ð13Þ

er ¼ � ln
p
W

r
� �

; eh ¼ ln
p
W

r
� �

; ð14a;bÞ
and the constitutive equations given in Eq. (10). The boundary conditions are
tð�erÞjr¼ri
¼ 0; tðerÞjr¼ro

¼ 0; ð15a;bÞ
where t, defined by tðmÞ ¼ rm, is the traction vector associated with the normal vector m. The boundary-

value problem defined by Eqs. (10) and (12)–(15a,b) can be analytically solved as follows.

Using Eqs. (10), (13) and (14a,b) in Eq. (12) results in
dp
dr

¼ � 2

3
E 1
h

þ 2 ln
p
W

r
� �i 1

r
: ð16Þ
Integrating Eq. (16) from ro to r yields
pðrÞ ¼ pðroÞ �
2

3
E 1

�
þ ln

p2

W 2
rro

� ��
ln

r
ro
: ð17Þ
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The use of Eqs. (10), (13) and (14a,b) in Eq. (15b) leads to
pðroÞ ¼ � 2

3
E ln

p
W

ro
� �

: ð18Þ
Combining Eqs. (17) and (18) then gives
pðrÞ ¼ � 2

3
E ln

p
W

r
� ��

þ ln
p2

W 2
rro

� �
ln

r
ro

�
ð19Þ
as the expression of the hydrostatic pressure. Substituting Eqs. (11), (13), (14a,b) and (19) into Eq. (10)

yields the stress components as
rr ¼
2

3
E ln

p2

W 2
rro

� �
ln

r
ro
;

rh ¼
2

3
E 2 ln

p
W

r
� ��

þ ln
p2

W 2
rro

� �
ln

r
ro

�
;

rz ¼
2

3
E ln

p
W

r
� ��

þ ln
p2

W 2
rro

� �
ln

r
ro

�
;

ð20a;b;cÞ
where ro, together with ri, is yet unknown and will be determined next from the remaining boundary

conditions.

Using Eq. (20a) in Eq. (15a) results in
p2

W 2
riro ¼ 1 ð21Þ
as the first relation required for solving ri and ro. The second needed relation is provided by the incom-

pressibility (global) as
r2o � r2i
4T

¼ W
p
: ð22Þ
Solving Eqs. (21) and (22) yields
ri ¼
W 2

p2

1

ro
; ro ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W
p

2T þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4T 2 þ W 2

p2

r !vuut : ð23a;bÞ
Finally, the strain energy stored in the tube, Ps, is given by
Ps ¼
Z
V

1

2
rijeij dV ¼

Z
V

1

2
ðrrer þ rhehÞdV ; ð24Þ
where dV ¼ ð2LÞð2prÞdr is the volume element. Substituting Eqs. (14a,b) and (20a,b) into Eq. (24) results

in
Ps

2L
¼ 4p

3
E r2i ln

p
W

ri
� ��

þ 1

4
ðr2o � r2i Þ

�
; ð25Þ
where use has also been made of Eq. (22).

2.3. Energy equivalence and Young’s modulus

It has been found that the p-bond inversion of carbon atoms in a graphite sheet provides the resistance of

the sheet to pure bending. Accordingly, by using the p-orbital axis vector technique the molecular potential
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energy per carbon atom stored in a nanotube formed by pure bending of an undeformed (flat) graphite

sheet, Px, can be shown to be (see Odegard et al. (2002) and references cited therein)
Px ¼ Kx

r2nt
; ð26Þ
where Kx is a force constant, and rnt ¼ ðri þ roÞ=2 is the mean radius of the nanotube. Some representative

values of Kx obtained from published computational chemistry data are summarized in Odegard et al.

(2002), which range from 0.011 to 0.022 eV Æ nm2/atom, with an average of 0.018 eV Æ nm2/atom. The total

number of carbon atoms per nanotube is given by (Sawada and Hamada, 1992)
N ¼ 2prntð2LÞ
X

; ð27Þ
where X is the occupied area per carbon atom in a nanotube, whose value is around 0.0262 nm2/atom

(Zhou et al., 2000; Zhang et al., 2002). Hence, it follows from Eqs. (26) and (27) that the total molecular

potential energy of a nanotube (relative to the undeformed graphite sheet), Pm, has the expression:
Pm

2L
¼ PxN

2L
¼ 2pKx

Xrnt
: ð28Þ
This amount of molecular potential energy available in the nanotube must be the same as the amount of

strain energy stored in the continuum cylinder after rolling from the (stress-free) flat plate in order to have

the required atomistic assembly (nanotube)––continuum (cylinder) equivalence. Hence, by equating Ps in
Eq. (25) and Pm in Eq. (28), the elastic modulus, E, can be determined in terms of the known parameters as
E ¼ 3Kx

2Xrnt
r2i ln

p
W

ri
� ��

þ 1

4
ðr2o � r2i Þ

��1

: ð29Þ
Since both the strain energy given in Eq. (25) and the molecular potential energy expressed in Eq. (28)

are for the cylinder/nanotube, the resulting formula listed in Eq. (29) can be directly used to calculate the

Young�s modulus of the SWCNT, which is a rolled-up graphite sheet.
Note that Eqs. (23a,b) can be rewritten, in terms of rnt and T , as
ri ¼ 2rnt � ro; ro ¼
rnt

r2nt þ T 2
r2nt
�

þ T 2 þ T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2nt þ T 2

q �
: ð30a;bÞ
The substitution of Eqs. (30a,b) into Eq. (29) then gives the expression for the Young�s modulus of the

nanotube in terms of geometrical ðrnt; T Þ and molecular ðKx;XÞ parameters, noting from Eq. (23a) that W is

related to ri and ro (and thus rnt and T ). Clearly, for given Kx and X the values of E predicted by this model

will depend on both rnt and T . Sample numerical results for the Young�s modulus predicted by the current

model will be provided in the next section, where they will also be compared to the results obtained using

Tibbetts� (1984) model which is based on the simple beam bending theory and is discussed further below.

Replacing a, R and L in Eq. (1) by 2T , rnt and 2L, respectively, gives the strain energy P in Tibbetts�
model in terms of the current notation:
P
2L

¼ 2pET 3

3rnt
: ð31Þ
This is valid for the plane stress case (i.e., narrow beam bending), as noted earlier. For plane strain de-

formations, Eq. (31) needs to be modified by replacing E with E=ð1� m2Þ, which leads to
P
2L

¼ 2pET 3

3ð1� m2Þrnt
; ð32Þ
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where m is the Poisson�s ratio of the graphite sheet. By equating P in Eq. (32) and Pm in Eq. (28), the

Young�s modulus predicted by Tibbetts� model for the plane strain case (i.e., wide beam or plate bending) is

obtained as
E ¼ 3ð1� m2ÞKx

T 3X
: ð33Þ
This formula will be directly applied to generate numerical data in the next section. Clearly, Eq. (33) shows

that Young�s modulus E predicted by the Tibbetts model is independent of the nanotube mean radius rnt,
which differs from that predicted by the current model (see Eqs. (29) and (30a,b)). This difference will be

further demonstrated using numerical data in the next section.
3. Numerical results

To illustrate the analytical formulas obtained in the preceding section, a parametric study of sample

cases has been carried out. The relevant numerical results are presented below.

The variation of the Young�s modulus with the nanotube radius, as predicted by the current model, is

graphically shown in Fig. 2, where it is also compared to that determined using Tibbetts� (1984) model in

the form given by Eq. (33) (with m ¼ 0:5 used here). Following Yakobson et al. (1996), the effective

thickness of the graphite sheet (i.e., 2T ; see Fig. 1) is taken to be 0.066 nm in the calculations leading to Fig.

2. Also, Kx ¼ 0:018 eV Æ nm2/atom and X ¼ 0:0262 nm2/atom, which are two typical values mentioned

earlier, are used in obtaining the data shown in Figs. 2 and 3.
As illustrated in Fig. 2, the current model predicts E ¼ 5:5 TPa, the value given in Yakobson et al. (1996)

for carbon nanotubes having the effective thickness of 0.066 nm, when rnt ¼ 0:0375 nm. Furthermore, it is

seen from Fig. 2 that the Young�s modulus estimated by Tibbetts� model is a constant, independent of the

nanotube radius. This is not the case with the current model. As shown in Fig. 2, with the increase of the

radius the Young�s modulus predicted by the current model decreases monotonically, which is in agreement

with the trend revealed by the molecular dynamics studies reported in Cornwell and Wille (1997) and Yao

and Lordi (1998). On the other hand, Fig. 2 also shows that for the effective thickness 2T ¼ 0:066 nm used

here the current model and Tibbetts� model predict the same value of the Young�s modulus when
rnt ¼ 0:0338 nm, irrespective of the values of Kx and X. This, in fact, follows mathematically from equating

Eqs. (29) and (33).

The influence of the nanotube wall thickness on the Young�s modulus is illustrated in Fig. 3. From this

figure it can be observed that the Young�s modulus is reduced as the wall thickness increases. This predicted

effect of the wall thickness, together with that of the nanotube radius, on the Young�s modulus agrees with
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what was noted in Odegard et al. (2002), where it was stated, based on a different argument, that the

Young�s modulus should be inversely proportional to the cross-sectional area of the tube (and thus the
product of the nanotube radius and wall thickness).
4. Summary

An analytical continuum model for computing strain energies and estimating Young�s modulus of

SWCNTs is developed using a multi-scale approach based on the energy equivalence. Finite deformation

kinematics is invoked to describe the tube formation on the continuum level. A SWCNT is viewed as a

continuum hollow cylinder formed by rolling up a flat graphite sheet (treated as an isotropic continuum

plate). The Hencky (true) strain and the Cauchy (true) stress are employed to account for large defor-

mations, while Hooke�s law is applied to represent the constitutive behavior. Based on the equivalence of

the strain energy and the molecular potential energy, an explicit formula for calculating the Young�s
modulus is derived, which, containing parameters at both continuum and molecular scales, directly links
the macroscopic responses of nanotubes to their molecular structures.

To demonstrate the application of the new formula, a parametric study of sample cases is conducted.

The trends of the Young�s modulus changing respectively with the radius and thickness of a nanotube, as

predicted by the current model, are in agreement with those predicted by several existing continuum me-

chanics and molecular dynamics models.
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